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Abstract

Suffix trees and suffix arrays are widely used and largely interchangeable
index structures on strings and sequences. Practitioners prefer suffix arrays
due to their simplicity and space efficiency while theoreticians use suffix trees
due to linear-time construction algorithms and more explicit structure. We
narrow this gap between theory and practice with a simple linear-time con-
struction algorithm for suffix arrays. The simplicity is demonstrated with a
C++ implementation of 50 effective lines of code. The algorithm is called
DC3, which stems from the central underlying concept of difference cover.
This view leads to a generalized algorithm, DC, that allows a space-efficient
implementation and, moreover, supports the choice of a space–time tradeoff.
For any v ∈ [1,

√
n], it runs in O(vn) time using O(n/

√
v) space in addition

to the input string and the suffix array. We also present variants of the al-
gorithm for several parallel and hierarchical memory models of computation.
The algorithms for BSP and EREW-PRAM models are asymptotically faster
than all previous suffix tree or array construction algorithms.

1 Introduction

The suffix tree [60] of a string is the compact trie of all its suffixes. It is a powerful
data structure with numerous applications in computational biology [28] and else-
where [26]. It can be constructed in linear time in the length of the string [16, 19, 48,
57, 60]. The suffix array [24, 45] is the lexicographically sorted array of the suffixes
of a string. It contains much the same information as the suffix tree, although in
a more implicit form, but is a simpler and more compact data structure for many
applications [2, 7, 24, 45]. However, until recently, the only linear-time construction
algorithm was based on a lexicographic traversal of the suffix tree.
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Due to a more explicit structure and the direct linear-time construction algo-
rithms, theoreticians tend to prefer suffix trees over suffix arrays. This is evident,
for example, in text books, including recent ones [13, 56]. Practitioners, on the other
hand, often use suffix arrays, because they are more space-efficient and simpler to
implement. This difference of theoretical and practical approaches appears even
within a single paper [50].

We address the gap between theory and practice by describing the first direct
linear-time suffix array construction algorithm, elevating suffix arrays to equals of
suffix trees in this sense. Independently and simultaneously to our result, which
originally appeared in [36], two different linear-time algorithms were introduced by
Kim et al. [40], and Ko and Aluru [41]. In this paper, we will also introduce several
extensions and generalizations of the algorithm, including space-efficient, parallel
and external memory variants.

Linear-time algorithm. Many linear-time suffix tree construction algorithms are
truly linear-time only for constant alphabet, i.e, when the size of the alphabet is
constant [48, 57, 60]. Farach [16] introduced the first algorithm to overcome this
restriction; it works in linear-time for integer alphabet, i.e., when the characters are
integers from a linear-sized range. This is a significant improvement, since a string
over any alphabet can be transformed into such a string by sorting the characters
and replacing them with their ranks. This preserves the structure of the suffix tree
and the order of the suffixes. Consequently, the complexity of constructing the
suffix tree of a string is the same as the complexity of sorting the characters of the
string [19].

Whereas the algorithms requiring a constant alphabet are incremental, adding
one suffix or one character at a time to the tree, Farach’s algorithm takes the fol-
lowing half-recursive divide-and-conquer approach:

1. Construct the suffix tree of the suffixes starting at odd positions. This is done
by reduction to the suffix tree construction of a string of half the length, which
is solved recursively.

2. Construct the suffix tree of the remaining suffixes using the result of the first
step.

3. Merge the two suffix trees into one.

The crux of the algorithm is the merging step, which is an intricate and complicated
procedure.

The same structure appears in some parallel and external memory suffix tree
construction algorithms [17, 18, 19] as well as the direct linear-time suffix array
construction algorithm of Kim et al. [40]. In all cases, the merge is a very complicated
procedure. The linear-time suffix array construction algorithm of Ko and Aluru [41]
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also uses the divide-and-conquer approach of first sorting a subset or sample of
suffixes by recursion. However, its choice of the sample and the rest of the algorithm
are quite different.

We introduce a linear-time suffix array construction algorithm following the
structure of Farach’s algorithm but using 2/3-recursion instead of half-recursion:

1. Construct the suffix array of the suffixes starting at positions i mod 3 6= 0.
This is done by reduction to the suffix array construction of a string of two
thirds the length, which is solved recursively.

2. Construct the suffix array of the remaining suffixes using the result of the first
step.

3. Merge the two suffix arrays into one.

Surprisingly, the use of two thirds instead of half of the suffixes in the first step makes
the last step almost trivial: simple comparison-based merging is sufficient. For
example, to compare suffixes starting at i and j with i mod 3 = 0 and j mod 3 = 1,
we first compare the initial characters, and if they are the same, we compare the
suffixes starting at i + 1 and j + 1, whose relative order is already known from the
first step.

Space-efficient algorithms. All the above suffix array construction algorithms
require at least n pointers or integers of extra space in addition to the n characters of
the input and the n pointers/integers of the suffix array. Until recently, this was true
for all algorithms running in O(n log n) time. There are also so-called lightweight
algorithms that use significantly less extra space [47, 4], but their worst-case time
complexity is Ω(n2). Manzini and Ferragina [47] have raised the question of whether
it is possible to achieve O(n log n) runtime using sublinear extra space.

The question was answered positively by Burkhardt and Kärkkäinen [6] with an
algorithm running in O(n log n) time and O(n/

√
log n) extra space. They also gave

a generalization running in O(n log n + nv) time and O(n/
√

v) extra space for any
v ∈ [3, n]. In this paper, combining ideas from [6] with the linear-time algorithm, we
improve the result to O(nv) time in O(n/

√
v) extra space, leading to an o(n log n)

time and o(n) extra space algorithm.
To achieve the result, we generalize the linear-time algorithm so that the sample

of suffixes sorted in the first step can be chosen from a family, called the difference
cover samples, that includes arbitrarily sparse samples. This family was introduced
in [6] and its name comes from a characterization using the concept of difference
cover. Difference covers have also been used for VLSI design [39], distributed mutual
exclusion [44, 10], and quantum computing [5].

An even more space-efficient approach is to construct compressed indexes [21, 27,
42, 31, 32]. However, for constant v our algorithm is a factor of at least Θ(log log σ)
faster than these algorithms, where σ is the alphabet size.
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Table 1: Suffix array construction algorithms. The algorithms in [16, 17, 18, 19] are
indirect, i.e., they actually construct a suffix tree, which can be then be transformed
into a suffix array

model of computation complexity alphabet source
RAM O(n log n) time general [45, 43, 6]

O(n) time integer
[16, 40,
41],DC

External Memory [59]
D disks, block size B,
fast memory of size M

O( n
DB

logM

B

n
B

log n) I/Os

O(n logM

B

n
B

log n) internal work
integer [12]

O( n
DB

logM

B

n
B

) I/Os

O(n logM

B

n
B

) internal work
integer [19],DC

Cache Oblivious [22]
M/B cache blocks of size B

O( n
B

logM

B

n
B

log n) cache faults general [12]

O( n
B

logM

B

n
B

) cache faults general [19],DC

BSP [58]
P processors

h-relation in time L + gh

O(n log n
P

+ (L + gn
P

) log3 n log P
log(n/P )

)
time

general [17]

O(n log n
P

+ L log2 P + gn log n
P log(n/P )

)
time

general DC

P = O(n1−ε) processors O(n/P + L log2 P + gn/P ) time integer DC

EREW-PRAM [33] O(log4 n) time, O(n log n) work general [17]

O(log2 n) time, O(n log n) work general DC

arbitrary-CRCW-PRAM [33]O(log n) time, O(n) work (rand.) constant [18]

priority-CRCW-PRAM [33]
O(log2 n) time, O(n) work

(rand.)
constant DC

Advanced models of computation. Since our algorithm is constructed from
well studied building blocks like integer sorting and merging, simple direct suffix
array construction algorithms for several models of computation are almost a corol-
lary. Table 1 summarizes these results. We win a factor Θ(log n) over the previously
best direct external memory algorithm. For BSP and EREW-PRAM models, we
obtain an improvement over all previous results, including the first linear work BSP
algorithm.
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Overview. The paper is organized as follows. Section 3 explains the basic linear
time algorithm DC3. We then use the concept of a difference cover introduced in
Section 4 to describe a generalized algorithm called DC in Section 5 that leads to
a space efficient algorithm in Section 6. Section 7 explains implementations of the
DC3 algorithm in advanced models of computation. The results together with some
open issues are discussed in Section 8.

2 Notation

We use the shorthands [i, j] = {i, . . . , j} and [i, j) = [i, j − 1] for ranges of integers
and extend to substrings as seen below.

The input of a suffix array construction algorithm is a string T = T [0, n) =
t0t1 · · · tn−1 over the alphabet [1, n], that is, a sequence of n integers from the range
[1, n]. For convenience, we assume that tj = 0 for j ≥ n. Sometimes we also assume
that n + 1 is a multiple of some constant v or a square to avoid a proliferation
of trivial case distinctions and d·e operations. An implementation will either spell
out the case distinctions or pad (sub)problems with an appropriate number of zero
characters. The restriction to the alphabet [1, n] is not a serious one. For a string T
over any alphabet, we can first sort the characters of T , remove duplicates, assign
a rank to each character, and construct a new string T ′ over the alphabet [1, n]
by renaming the characters of T with their ranks. Since the renaming is order
preserving, the order of the suffixes does not change.

For i ∈ [0, n], let Si denote the suffix T [i, n) = titi+1 · · · tn−1. We also extend
the notation to sets: for C ⊆ [0, n], SC = {Si | i ∈ C}. The goal is to sort the
set S[0,n] of suffixes of T , where comparison of substrings or tuples assumes the
lexicographic order throughout this paper. The output is the suffix array SA[0, n]
of T , a permutation of [0, n] satisfying SSA[0] < SSA[1] < · · · < SSA[n].

3 Linear-time algorithm

We begin with a detailed description of the simple linear-time algorithm, which we
call DC3 (for Difference Cover modulo 3, see Section 4). A complete implementation
in C++ is given in Appendix A. The execution of the algorithm is illustrated with
the following example

0 1 2 3 4 5 6 7 8 9 10 11

T [0, n) = y a b b a d a b b a d o

where we are looking for the suffix array

SA = (12, 1, 6, 4, 9, 3, 8, 2, 7, 5, 10, 11, 0) .
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Step 0: Construct a sample. For k = 0, 1, 2, define

Bk = {i ∈ [0, n] | i mod 3 = k}.

Let C = B1 ∪ B2 be the set of sample positions and SC the set of sample suffixes.

Example. B1 = {1, 4, 7, 10}, B2 = {2, 5, 8, 11}, i.e., C = {1, 4, 7, 10, 2, 5, 8, 11}.

Step 1: Sort sample suffixes. For k = 1, 2, construct the strings

Rk = [tktk+1tk+2][tk+3tk+4tk+5] . . . [tmax Bk
tmax Bk+1tmax Bk+2]

whose characters are triples [titi+1ti+2]. Note that the last character of Rk is always
unique because tmax Bk+2 = 0. Let R = R1 � R2 be the concatenation of R1 and
R2. Then the (nonempty) suffixes of R correspond to the set SC of sample suffixes:
[titi+1ti+2][ti+3ti+4ti+5] . . . corresponds to Si. The correspondence is order preserving,
i.e., by sorting the suffixes of R we get the order of the sample suffixes SC .

Example. R = [abb][ada][bba][do0][bba][dab][bad][o00].

To sort the suffixes of R, first radix sort the characters of R and rename them
with their ranks to obtain the string R′. If all characters are different, the order
of characters gives directly the order of suffixes. Otherwise, sort the suffixes of R′

using Algorithm DC3.

Example. R′ = (1, 2, 4, 6, 4, 5, 3, 7) and SAR′ = (8, 0, 1, 6, 4, 2, 5, 3, 7).

Once the sample suffixes are sorted, assign a rank to each suffix. For i ∈ C,
let rank(Si) denote the rank of Si in the sample set SC . Additionally, define
rank(Sn+1) = rank(Sn+2) = 0. For i ∈ B0, rank(Si) is undefined.

Example.
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

rank(Si) ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥ 0 0

Step 2: Sort nonsample suffixes. Represent each nonsample suffix Si ∈ SB0

with the pair (ti, rank(Si+1)). Note that rank(Si+1) is always defined for i ∈ B0.
Clearly we have, for all i, j ∈ B0,

Si ≤ Sj ⇐⇒ (ti, rank(Si+1)) ≤ (tj, rank(Sj+1)).

The pairs (ti, rank(Si+1)) are then radix sorted.

Example. S12 < S6 < S9 < S3 < S0 because (0, 0) < (a, 5) < (a, 7) < (b, 2) < (y, 1).
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Step 3: Merge. The two sorted sets of suffixes are merged using a standard
comparison-based merging. To compare suffix Si ∈ SC with Sj ∈ SB0

, we distinguish
two cases:

i ∈ B1 : Si ≤ Sj ⇐⇒ (ti, rank(Si+1)) ≤ (tj, rank(Sj+1))

i ∈ B2 : Si ≤ Sj ⇐⇒ (ti, ti+1, rank(Si+2)) ≤ (tj, tj+1, rank(Sj+2))

Note that the ranks are defined in all cases.

Example. S1 < S6 because (a, 4) < (a, 5) and S3 < S8 because (b, a, 6) < (b, a, 7).

The time complexity is established by the following theorem.

Theorem 1. The time complexity of Algorithm DC3 is O(n).

Proof. Excluding the recursive call, everything can clearly be done in linear time.
The recursion is on a string of length d2n/3e. Thus the time is given by the recur-
rence T (n) = T (2n/3) + O(n), whose solution is T (n) = O(n).

4 Difference cover sample

The sample of suffixes in DC3 is a special case of a difference cover sample. In this
section, we describe what difference cover samples are, and in the next section we
give a general algorithm based on difference cover samples.

The sample used by the algorithms has to satisfy two sample conditions:

1. The sample itself can be sorted efficiently. Only certain special cases are known
to satisfy this condition (see [37, 3, 9, 41] for examples). For example, a random
sample would not work for this reason. Difference cover samples can be sorted
efficiently because they are periodic (with a small period). Steps 0 and 1 of
the general algorithm could be modified for sorting any periodic sample of size
m with period length v in O(vm) time.

2. The sorted sample helps in sorting the set of all suffixes. The set of difference
cover sample positions has the property that for any i, j ∈ [0, n− v + 1] there
is a small ` such that both i + ` and j + ` are sample positions. See Steps 2–4
in Section 5 for how this property is utilized in the algorithm.

The difference cover sample is based on difference covers [39, 10].

Definition 1. A set D ⊆ [0, v) is a difference cover modulo v if

{(i − j) mod v | i, j ∈ D} = [0, v) .
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Definition 2. A v-periodic sample C of [0, n] with the period D, i.e.,

C = {i ∈ [0, n] | i mod v ∈ D} ,

is a difference cover sample if D is a difference cover modulo v.

By being periodic, a difference cover sample satisfies the first of the sample
conditions. That it satisfies the second condition is shown by the following lemma.

Lemma 1. If D is a difference cover modulo v, and i and j are integers, there exists
` ∈ [0, v) such that (i + `) mod v and (j + `) mod v are in D.

Proof. By the definition of difference cover, there exists i′, j ′ ∈ D such that i′− j ′ ≡
i − j (mod v). Let ` = (i′ − i) mod v. Then

i + ` ≡ i′ ∈ D (mod v)

j + ` ≡ i′ − (i − j) ≡ j ′ ∈ D (mod v) .

Note that by using a lookup table of size v that maps (i − j) mod v into i′, the
value ` can be computed in constant time.

The size of the difference cover is a key parameter for the space-efficient algorithm
in Sections 6. Clearly,

√
v is a lower bound. The best general upper bound that we

are aware of is achieved by a simple algorithm due to Colbourn and Ling [10]:

Lemma 2 ([10]). For any v, a difference cover modulo v of size at most
√

1.5v +6
can be computed in O(

√
v) time.

The sizes of the smallest known difference covers for several period lengths are
shown in Table 2.

Table 2: The size of the smallest known difference cover D modulo v for several
period lengths v. The difference covers were obtained from [44] (v ≤ 64) and [6]
(v = 128, 256), or computed using the algorithm of Colbourn and Ling [10] (v ≥
512). For v ≤ 128, the sizes are known to be optimal

v 3 7 13 21 31 32 64 128 256 512 1024 2048
|D| 2 3 4 5 6 7 9 13 20 28 40 58

5 General algorithm

The algorithm DC3 sorts suffixes with starting positions in a difference cover sample
modulo 3 and then uses these to sort all suffixes. In this section, we present a
generalized algorithm DC that can use any difference cover D modulo v.
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Step 0: Construct a sample. For k ∈ [0, v), define

Bk = {i ∈ [0, n] | i mod v = k}.
The set of sample positions is now C =

⋃

k∈D Bk. Let D̄ = [0, v) \ D and C̄ =
[0, n] \ C.

Step 1: Sort sample suffixes. For k ∈ D, construct the strings

Rk = [tktk+1 . . . tk+v−1][tk+vtk+v+1 . . . tk+2v−1] . . . [tmax Bk
. . . tmax Bk+v−1].

Let R =
⊙

k∈D Rk, where
⊙

denotes a concatenation. The (nonempty) suffixes
of R correspond to the sample suffixes, and they are sorted recursively (using any
period length from 3 to (1 − ε)v2/|D| to ensure the convergence of the recursion).

Let rank(Si) be defined as in DC3 for i ∈ C, and additionally define rank(Sn+1) =
rank(Sn+2) = · · · = rank(Sn+v−1) = 0. Again, rank(Si) is undefined for i ∈ C̄.

Step 2: Sort nonsample suffixes. Sort each SBk
, k ∈ D̄, separately. Let k ∈ D̄

and let ` ∈ [0, v) be such that (k + `) mod v ∈ D. To sort SBk
, represent each

suffix Si ∈ SBk
with the tuples (ti, ti+1, . . . , ti+`−1, rank(Si+`)). Note that the rank

is always defined. The tuples are then radix sorted.
The most straightforward generalization of DC3 would now merge the sets SBk

,
k ∈ D̄. However, this would be a Θ(v)-way merging with O(v)-time comparisons
giving O(nv log v) time complexity. Therefore, we take a slightly different approach.

Step 3: Sort by first v characters. Separate the sample suffixes SC into sets
SBk

, k ∈ D, keeping each set ordered. Then we have all the sets SBk
, k ∈ [0, v),

as sorted sequences. Concatenate these sequences and sort the result stably by the
first v characters.

For α ∈ [0, n]v, let Sα be the set of suffixes starting with α, and let Sα
Bk

=
Sα ∩ SBk

. The algorithm has now separated the suffixes into the sets Sα
Bk

, each of
which is correctly sorted. The sets are also grouped by α and the groups are sorted.
For v = 3, the situation could look like this:

Saaa
B0

Saaa
B1

Saaa
B2

Saab
B0

Saab
B1

Saab
B2

Saac
B0

· · ·

Step 4: Merge. For each α ∈ [0, n]v, merge the sets Sα
Bk

, k ∈ [0, v), into the set
Sα. This completes the sorting.

The merging is done by a comparison-based v-way merging. For i, j ∈ [0, n],
let ` ∈ [0, v) be such that (i + `) mod v and (j + `) mod v are both in D. Suffixes
Si and Sj are compared by comparing rank(Si+`) and rank(Sj+`). This gives the
correct order because Si and Sj belong to the same set Sα and thus titi+1 . . . ti+`−1 =
tjtj+1 . . . tj+`−1.

Theorem 2. The time complexity of Algorithm DC is O(vn).
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6 Lightweight algorithm

We now explain how to implement algorithm DC using only O(n/
√

v) space in
addition to the input and the output. We will however reuse the space for the
output array a[0, n] as intermediate storage.

Step 0:. The sample can be represented using their O(n/
√

v) starting positions.

Step 1:. To sort the sample suffixes, we first (non-inplace) radix sort the v-tuples
that start at sample positions. This is easy using two arrays of size O(n/

√
v) for

storing starting positions of samples and n + 1 counters (one for each character)
stored in the output array a[0, n]. This is analogous to the arrays R, SA12 and c

used in Appendix A. Renaming the tuples with ranks only needs the O(n/
√

v) space
for the recursive subproblem. The same space bound applies to the suffix array of
the sample and the space needed within the recursive call.

Step 2:. Sorting nonsample suffixes for a particular class SBk
, k ∈ D̄ amounts to

radix sorting (n + 1)/v many tuples of up to v integers in the range [0, n]. Similar
to Step 1, we need only space O(n/v) for describing these tuples. However, we now
arrange the sorted tuples in a[k(n+1)/v, (k +1)(n+1)/v) so that the output array
is not available for counters as in Step 1. We solve this problem by viewing each
character as two subcharacters in the range [0,

√
n + 1).

Step 3: Sort by first v characters. Scan the suffix array of the sample and store
the sample suffixes SBk

, k ∈ C in a[k(n+1)/v, (k+1)(n+1)/v) maintaining the order
given by the sample within each class SBk

. Together with the computation in Step 2,
the output array now stores the desired concatenation of all sorted sets SBk

. We
now sort all suffixes stably by their first v characters. Using a counter array of size
O(

√
n) we can do that in 2v passes, total time O(vn), and additional space O(n3/4)

by applying the almost inplace distribution sorting algorithm from Theorem 5 in
the appendix with k =

√
n + 1. Note that for v = O(

√
n), n3/4 = O(n/

√
v).

Step 4: Merge. Suppose Sα is stored in a[b, b′). This array consists of v con-
secutive (possibly empty) subarrays that represent Sα

Bk
, k ∈ [0, v) respectively.

We can merge them with O(
√

|Sα|v) additional space using the almost inplace
merging routine (see Theorem 6 in the appendix). Note that for v = O(

√
n),

√

|Sα|v = O(n/
√

v).

Theorem 3. For v = O(
√

n), algorithm DC can be implemented to run in time
O(vn) using additional space O(n/

√
v).

The upper bound for v can be increased to O(n2/3) by using the comparison
based algorithm from [6] when v = ω(

√
n).
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7 Advanced models

In this section, we adapt the DC3 algorithm for several advanced models of compu-
tation. We first explain the main ideas and then bundle the results in Theorem 4
below.

The adaptation to memory hierarchies is easy since all operations can be de-
scribed in terms of scanning, sorting, and permuting sequences of tuples using stan-
dard techniques. Since scanning is trivial and since permuting is equivalent to
sorting, all we really need is a good external sorting algorithm. The proof therefore
concentrates on bounding the internal work associated with integer sorting.

Parallelization is slightly more complicated since the scanning needed to find the
ranks of elements looks like a sequential process on the first glance. However, the
technique to overcome this is also standard: Consider a sorted array a[0, n]. Define
c[0] = 1 and c[i] = 1 if c[i − 1] 6= c[i] and c[i] = 0 otherwise for i ∈ [1, n]. Now the
prefix sums

∑

i∈[0,j] c[i] give the rank of a[j]. Computing prefix sums in parallel is
again a well studied problem.

Theorem 4. The DC3 algorithm can be implemented to achieve the following per-
formance guarantees on advanced models of computation:

model of computation complexity alphabet

External Memory [59]

D disks, block size B,
fast memory of size M

O( n
DB

logM

B

n
B

) I/Os

O(n logM

B

n
B

) internal work
integer

Cache Oblivious [22] O( n
B

logM

B

n
B

) cache faults general

BSP [58]

P processors
h-relation in time L + gh

O(n log n
P

+ L log2 P + gn log n
P log(n/P )

) time general

P = O(n1−ε) processors O(n/P + L log2 P + gn/P ) time integer

EREW-PRAM [33] O(log2 n) time and O(n log n) work general

priority-CRCW-PRAM [33]
O(log2 n) time and O(n) work

(randomized)
constant

Proof. External memory: Step 1 of the DC3 algorithm begins by scanning the
input and producing tuples ([t3i+kt3i+k+1t3i+k+2], 3i + k) for k ∈ {1, 2} and 3i + k ∈
[0, n]. These tuples are then sorted by lexicographic order of the character triples.
The results are scanned producing rank position pairs (r3i+k, 3i + k). Constructing
a recursive problem instance then amounts to sorting using the lexicographic order
of (k, i) for comparing positions of the form 3i + k. Similarly, assigning ranks to
a sample suffix j at position i in the suffix array of the sample amounts to sorting
pairs of the form (i, j).
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Step 2 sorts triples of the form (ti, rank(Si+1), i). Step 3 represents S3i as
(t3i, t3i+1, rank(S3i+1), rank(S3i+2), 3i), S3i+1 as (t3i+1, rank(S3i+2), 3i+1), and S3i+2

as (t3i+2, t3i+3, rank(S3i+4)), 3i + 2). This way all the information needed for com-
parisons is available. These representations are produced using additional sorting
and scanning passes. A more detailed description and analysis of external DC3 is
given in [14]. It turns out that the total I/O volume is equivalent to the amount
I/O needed for sorting 30n words of memory plus the I/O needed for scanning 6n
words.

All in all, the complexity of external suffix array construction is governed by the
effort for sorting objects consisting of a constant number of machine words. The
keys are integers in the range [0, n], or pairs or triples of such integers. I/O optimal
deterministic1 parallel disk sorting algorithms are well known [53, 52]. We have to
make a few remarks regarding internal work however. To achieve optimal internal
work for all values of n, M , and B, we can use radix sort where the most significant
digit has blog Mc − 1 bits and the remaining digits have blog M/Bc bits. Sorting
then starts with O(logM/B n/M) data distribution phases that need linear work each
and can be implemented using O(n/DB) I/Os using the same I/O strategy as in
[52]. It remains to stably sort the elements by their blog Mc−1 most significant bits.
This is also done using multiple phases of distribution sorting similar to [52] but we
can now afford to count how often each key appears and use this information to
produce splitters that perfectly balance the bucket sizes (we may have large buckets
with identical keys but this is no problem because no further sorting is required for
them). Mapping keys to buckets can use lookup tables of size O(M).

Cache oblivious: These algorithms are similar to external algorithms with a single
disk but they are not allowed to make explicit use of the block size B or the internal
memory size M . This is a serious restriction here since no cache oblivious integer
sorting with O( n

B
logM/B

n
B

) cache faults and o(n log n) work is known. Hence, we
can as well go to the comparison based alphabet model. The result is then an
immediate corollary of the optimal comparison based sorting algorithm [22].

EREW PRAM: We can use Cole’s merge sort [11] for parallel sorting and
merging. For an input of size m and P processors, Cole’s algorithm takes time
O((m log m)/P +log P ). The i-th level or recursion has an input of size n(2/3)i and
thus takes time (2/3)iO((n log n)/P +log P ). After Θ(log P ) levels of recursion, the
problem size has reduced so far that the remaining subproblem can be solved in
time O((n/P log(n/P )) on a single processor. We get an overall execution time of
O((n log n)/P + log2 P ).

BSP: For the case of many processors, we proceed as for the EREW-PRAM al-
gorithm using the optimal comparison based sorting algorithm [25] that takes time
O((n log n)/P + (gn/P + L) log n

log(n/P )
).

1Simpler randomized algorithms with favorable constant factors are also available [15].
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For the case of few processors, we can use a linear work sorting algorithm based
on radix sort [8] and a linear work merging algorithm [23]. The integer sorting
algorithm remains applicable at least during the first Θ(log log n) levels of recursion
of the DC3 algorithm. Then we can afford to switch to a comparison based algorithm
without increasing the overall amount of internal work.

CRCW PRAM: We employ the stable integer sorting algorithm [55] that works in
O(log n) time using linear work for keys with O(log log n) bits. This algorithm can
be used for the first Θ(log log log n) iterations for constant input alphabets. Then
we can afford to switch to the algorithm [29] that works for keys with O(log n) bits
at the price of being inefficient by a factor O(log log n). Comparison based merging
can be implemented with linear work and O(log n) time using [30].

The resulting algorithms are simple except that they may use complicated sub-
routines for sorting to obtain theoretically optimal results. There are usually much
simpler implementations of sorting that work well in practice although they may
sacrifice determinism or optimality for certain combinations of parameters.

8 Conclusion

The main result of this paper is DC3, a simple, direct, linear time algorithm for
suffix sorting with integer alphabets. The algorithm is easy to implement and it
can be used as an example for advanced string algorithms even in undergraduate
level algorithms courses. Its simplicity also makes it an ideal candidate for imple-
mentation on advanced models of computation. For example in [14] we describe
an external memory implementation that clearly outperforms the best previously
known implementations and several other new algorithms.

The concept of difference covers makes it possible to generalize the DC3 algo-
rithm. This generalized DC algorithm allows space efficient implementation. An
obvious remaining question is how to adapt DC to advanced models of computation
in a space efficient way. At least for the external memory model this is possible but
we only know an approach that needs I/O volume Ω (nv2.5).

The space efficient algorithm can also be adapted to sort an arbitrary set of
suffixes by simply excluding the nonsample suffixes that we do not want to sort in
the Steps 2–4. Sorting a set of m suffixes can be implemented to run in O(vm+n

√
v)

time using O(m + n/
√

v) additional space. Previously, the only alternatives were
string sorting in O(mn) worst case time or sorting all suffixes using O(n) additional
space. The space efficient Burrows–Wheeler transform in [35] relies on space efficient
sorting of subsets of suffixes.

In many applications [1, 2, 34, 38, 45], the suffix array needs to be augmented
with the longest common prefix array lcp that stores the length of the longest com-
mon prefix of SAi and SAi+1 in lcp[i]. Once the lcp information is known it also
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easy to infer advanced search data structures like suffix trees and string B-trees [20].
There are simple linear time algorithms for computing the lcp array from the suffix
array [38, 46], but they do not appear to be suitable for parallel or external com-
putation. Farach’s algorithm [16] and the other half-recursive algorithms compute
the lcp array at each level of the recursion since it is needed for merging. With a
similar technique the DC algorithm can be modified to compute the lcp array as
a byproduct: If k = SA[i] and j = SA[i + 1] then find an ` such that k + ` and
j + ` are both in the sample. If T [k, k + `) 6= T [j, j + `) then lcp[i] can be computed
locally. Otherwise, lcp[i] = ` + lcp(Sk+`, Sj+`). The lcp of Sk+` and Sj+` can be
approximated within an additive term v from the lcp information of the recursive
string R using range minima queries. All these operations can be implemented in
parallel or for memory hierarchies using standard techniques.
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[33] J. Jájá. An Introduction to Parallel Algorithms. Addison Wesley, 1992.
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A Source code

The following C++ file contains a complete linear time implementation of suffix
array construction. The main purpose of this code is to “prove” that the algorithm
is indeed simple and that our natural language description is not hiding nonobvious
complications. It should be noted that there are now faster (more complicated)
implementations of our algorithm [54]. A driver program can be found at http:

//www.mpi-sb.mpg.de/~sanders/programs/suffix/.

inline bool leq(int a1, int a2, int b1, int b2) // lexicographic order

{ return(a1 < b1 || a1 == b1 && a2 <= b2); } // for pairs

inline bool leq(int a1, int a2, int a3, int b1, int b2, int b3)

{ return(a1 < b1 || a1 == b1 && leq(a2,a3, b2,b3)); } // and triples

// stably sort a[0..n-1] to b[0..n-1] with keys in 0..K from r

static void radixPass(int* a, int* b, int* r, int n, int K)

{ // count occurrences

int* c = new int[K + 1]; // counter array

for (int i = 0; i <= K; i++) c[i] = 0; // reset counters

for (int i = 0; i < n; i++) c[r[a[i]]]++; // count occurrences

for (int i = 0, sum = 0; i <= K; i++) // exclusive prefix sums

{ int t = c[i]; c[i] = sum; sum += t; }

for (int i = 0; i < n; i++) b[c[r[a[i]]]++] = a[i]; // sort

delete [] c;

}

// find the suffix array SA of T[0..n-1] in {1..K}^n

// require T[n]=T[n+1]=T[n+2]=0, n>=2

void suffixArray(int* T, int* SA, int n, int K) {

int n0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;

int* R = new int[n02 + 3]; R[n02]= R[n02+1]= R[n02+2]=0;

int* SA12 = new int[n02 + 3]; SA12[n02]=SA12[n02+1]=SA12[n02+2]=0;

int* R0 = new int[n0];

int* SA0 = new int[n0];

//******* Step 0: Construct sample ********

// generate positions of mod 1 and mod 2 suffixes

// the "+(n0-n1)" adds a dummy mod 1 suffix if n%3 == 1

for (int i=0, j=0; i < n+(n0-n1); i++) if (i%3 != 0) R[j++] = i;

//******* Step 1: Sort sample suffixes ********

// lsb radix sort the mod 1 and mod 2 triples

radixPass(R , SA12, T+2, n02, K);

radixPass(SA12, R , T+1, n02, K);

radixPass(R , SA12, T , n02, K);
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// find lexicographic names of triples and

// write them to correct places in R

int name = 0, c0 = -1, c1 = -1, c2 = -1;

for (int i = 0; i < n02; i++) {

if (T[SA12[i]] != c0 || T[SA12[i]+1] != c1 || T[SA12[i]+2] != c2)

{ name++; c0 = T[SA12[i]]; c1 = T[SA12[i]+1]; c2 = T[SA12[i]+2]; }

if (SA12[i] % 3 == 1) { R[SA12[i]/3] = name; } // write to R1

else { R[SA12[i]/3 + n0] = name; } // write to R2

}

// recurse if names are not yet unique

if (name < n02) {

suffixArray(R, SA12, n02, name);

// store unique names in R using the suffix array

for (int i = 0; i < n02; i++) R[SA12[i]] = i + 1;

} else // generate the suffix array of R directly

for (int i = 0; i < n02; i++) SA12[R[i] - 1] = i;

//******* Step 2: Sort nonsample suffixes ********

// stably sort the mod 0 suffixes from SA12 by their first character

for (int i=0, j=0; i < n02; i++) if (SA12[i] < n0) R0[j++] = 3*SA12[i];

radixPass(R0, SA0, T, n0, K);

//******* Step 3: Merge ********

// merge sorted SA0 suffixes and sorted SA12 suffixes

for (int p=0, t=n0-n1, k=0; k < n; k++) {

#define GetI() (SA12[t] < n0 ? SA12[t] * 3 + 1 : (SA12[t] - n0) * 3 + 2)

int i = GetI(); // pos of current offset 12 suffix

int j = SA0[p]; // pos of current offset 0 suffix

if (SA12[t] < n0 ? // different compares for mod 1 and mod 2 suffixes

leq(T[i], R[SA12[t] + n0], T[j], R[j/3]) :

leq(T[i],T[i+1],R[SA12[t]-n0+1], T[j],T[j+1],R[j/3+n0]))

{ // suffix from SA12 is smaller

SA[k] = i; t++;

if (t == n02) // done --- only SA0 suffixes left

for (k++; p < n0; p++, k++) SA[k] = SA0[p];

} else { // suffix from SA0 is smaller

SA[k] = j; p++;

if (p == n0) // done --- only SA12 suffixes left

for (k++; t < n02; t++, k++) SA[k] = GetI();

}

}

delete [] R; delete [] SA12; delete [] SA0; delete [] R0;

}
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B Almost inplace stable distribution sorting and

multiway merging

For the lightweight implementation of the DC-algorithm, we need subroutines that
are combinations of well known ideas. We outline them here to keep the paper
self-contained.

The first idea is used for inplace yet instable distribution sorting (e.g., [49, 51]):
The algorithm works similar to the radixPass routine in Appendix A yet it reuses
the input array to allocate the output buckets. When character a[i] is moved to
its destination bucket at array entry j, a[j] is taken as the next element to be
distributed. This process is continued until an element is encountered that has
already been moved. This order of moving elements decomposes the permutation
implied by sorting into its constituent cycles. Therefore, the termination condition
is easy to check: A cycle ends when we get back to the element that started the
cycle. Unfortunately, this order of moving elements can destroy a preexisting order
of keys with identical value and hence is instable.

The second idea avoids instability using a reinterpretation of the input as a
sequence of blocks. For example, (almost) inplace multiway merging of files is a
standard technique in external memory processing [61, Section 5.3].

1 2 3 4 5

6 7 8

132 4 56 7 8

b1b0 b2

b1 b2b0

a

a

a

a

Figure 1: Example for the distribution algorithm for k = 3, n = 32, and B = 4. Four
states are shown: Before distribution, when all but two blocks have been distributed,
when all blocks are distributed, and the final sorted arrays. The numbers give the
order of block moves in the final permutation. In this example, only three additional
blocks are needed for temporary storage.

The synthesis of these two ideas leads to a “file-like” stable implementation of
distribution sorting and multiway merging followed by an inplace permutation at
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the block level that converts the file-representation back to an array representation.
We work out the details in the proofs of the following two theorems.

Theorem 5. An array a[0, n) containing elements with keys in the range [0, k),
k = O(n), can be stably sorted in time O(n) using O(

√
kn) additional space.

Proof. Let bj = [a[i] : i ∈ [0, n), key(a[i]) = j] denote the j=th bucket, i.e., the se-
quence of elements with key j. Sorting a means to permute it in such a way that
bj = a[

∑

i∈[0,j) |bi|,
∑

i∈[0,j] |bi|). We begin with a counting phase that computes the

bucket sizes |bj|.
Then we reinterpret a as a sequence of blocks of size B = Θ(

√

n/k). For the
time being, buckets will also be represented as sequences of blocks. For each key,
we create an initially empty bucket that is implemented as an array of d|bj|/Be
pointers to blocks. The first (

∑

i∈[0,j) |bi|) mod B elements of the first block of bj are
left empty in the distribution process. This way, elements are immediately moved
to the correct position modB. Buckets aquire additional blocks from a free list as
needed. However, for the last block of a bucket bj, j < k − 1, the first block of
bucket bj+1 is used. This way, only one partially filled block remains at the end:
The last block of bk−1 is stored in another preallocated block outside of a. The free
list is initially equipped with 2k + 2 empty blocks. The distribution process scans
through the input sequence and appends an element with key j to bucket bj. When
the last element from an input block has been consumed, this block is added to the
free list. Since at any point of time there are at most 2k + 1 partially filled blocks
(one for the input sequence, one at the start of a bucket, and one at the end of a
bucket), the free list never runs out of available blocks.

After the distribution phase, the blocks are permuted in such a way that a
becomes a sorted array. The blocks can be viewed as the nodes of a directed graph
where each nonempty block has an edge leading to the block in a where it should
be stored in the sorted order. The nodes of this graph have maximum in-degree and
out-degree one and hence the graph is a collection of paths and cycles. Paths end at
empty blocks in a. This structure can be exploited for the permutation algorithm:
In the outermost loop, we scan the blocks in a until we encounter a nonempty block
a[i, i + B) that has not been moved to its destination position j yet. This block is
moved to a temporary space t. We repeatedly swap t with the block of a where its
content should be moved until we reach the end of a path or cycle. When all blocks
from a are moved to their final destination, the additionally allocated blocks can be
moved to their final position directly. This includes the partially filled last block of
bk−1.

The total space overhead is O(kB) = O(
√

nk) for the additional blocks, O(dn/Be+
k) = O(

√
nk) for representing buckets, and O(dn/Be + k) = O(

√
nk) for pointers

that tell every block where it wants to go.

Theorem 6. An array a[0, n) consisting of k ≤ n sorted subarrays can be sorted in
time O(n log k) using O(

√
kn) additional space.
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Proof. The algorithm is similar to the distribution algorithm from Theorem 5 so that
we only outline the differences. We reinterpret the subarrays as sequences of blocks
of a with a partially filled block at their start and end. Only blocks that completely
belong to a subarray are handed to the free list. The smallest unmerged elements
from each sequence are kept in a priority queue. Merging repeatedly removes the
smallest element and appends it to the output sequence that is represented as a
sequence of blocks aquired from the free list. After the merging process, it remains
to permute blocks to obtain a sorted array. Except for space O(k) for the priority
queue, the space overhead is the same as for distribution sorting.
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